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Abstract.

Forest fires are a recurrent management problem in the Western Ghats of India. Although most fires occur

during the dry season, information on the spatial distribution of fires is needed to improve fire prevention. We used the
MODIS Hotspots database and Maxent algorithm to provide a quantitative understanding of the environmental controls
regulating the spatial distribution of forest fires over the period 2003—07 in the entire Western Ghats and in two nested
subregions with contrasting characteristics. We used hierarchical partitioning to assess the independent contributions of
climate, topography and vegetation to the goodness-of-fit of models and to build the most parsimonious fire susceptibility
model in each study area. Results show that although areas predicted as highly prone to forest fires were mainly localised
on the eastern slopes of the Ghats, spatial predictions and model accuracies differed significantly between study areas. We
suggest accordingly a two-step approach to identify: first, large fire-prone areas by paying special attention to the climatic
conditions of the monsoon season before the fire season, which determine the fuels moisture content during the fire season;
second, the most vulnerable sites within the fire-prone areas using local models mainly based on the type of vegetation.
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Introduction

Wildland fires are a major environmental issue in many tropical
biomes across the world (Goldammer 1990). Although fires can
play an ecologically significant role in biogeochemical cycles
and ecosystem functioning (e.g. co-evolution of savanna and
grasslands and fire), they often lead to the destruction of forest
vegetation with huge negative effects on atmospheric chemistry
(atmospheric pollution, carbon emission), ecology (biodiversity
loss, landscape instability) and forestry (reduction in wood
production) (Chuvieco 2003). In recent decades, the prolifera-
tion of agricultural systems due to population growth and
economic necessity has fragmented most forests throughout the
tropics (Mueller-Dombois and Goldammer 1990; Myers et al.
2000). As a consequence, fires now continually erode forest
edges and have become a major factor of ecological disturbance
in tropical regions (e.g. Cochrane and Laurance 2002).

Forest fires also represent a recurrent management problem
in the Western Ghats (WG) of India, a mountain range that
extends along the western coast of peninsular India, and which is
classified, along with the island of Sri Lanka, as one of the 34
global biodiversity hotspots (Myers et al. 2000). The region
harbours one of the last few remnants of non-equatorial tropical
rainforest around the globe, with a high number of endemic
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species (Pascal 1988; Das et al. 2006). It is also critical for
regulating regional hydrology, climate and carbon storage
(e.g. Krishnaswamy et al. 2009; Bonell e al. 2010). Forest fires
are recurrent disturbances in the WG, where the mean fire-return
interval shortened from 10 to 3 years between the 1910s and
1990s (Kodandapani et al. 2004). Although most fires occur
during the dry season (January—April), information on their
spatial distribution and environmental determinants is still
lacking (Kodandapani et al. 2008).

Fire susceptibility models aim at predicting, from a set of
localised observations, a fire risk level as a function of
external explanatory variables (Chuvieco 2003). This is a
very similar problem to predicting the potential geographical
distribution of biological species from the observation of
species occurrences in particular conditions of habitat, fol-
lowing the ecological niche concept (Scott et al. 2002). Fire is
similarly strongly regulated by the ‘fire environment triangle’,
i.e. topography, fuels and weather (Pyne et al. 1996; Parisien
and Moritz 2009), which can be assessed from the conditions
in which fires have already been observed. Unlike species
distribution models, however, fire susceptibility models can
be developed from remotely sensed fire occurrence data
(Giglio et al. 2003).

www.publish.csiro.au/journals/ijwf
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Among the various methods of habitat distribution model-
ling, Maxent (Phillips ef al. 2006) has proved to perform well in
comparison with other methods (Elith et al. 2006; Hernandez
et al. 2006). It is moreover particularly suited for dealing with
presence-only data, which means that verified absence is not
required to fit the model. The principle of Maxent is to estimate
the probability distribution of maximum entropy, which is,
under a set of constraints (the environmental conditions), the
most spread out or closest to uniform (Phillips et al. 2006;
Deblauwe et al. 2008). The model expresses from a set of
environmental raster layers a per-pixel probability of fire
occurrence, which results in a map of relative fire susceptibility
that can be used, together with knowledge of the environmental
causal factors, as a critical tool for forest management.

In this paper, we assess the predictive power of fire suscepti-
bility models built from MODIS Hotspots data and different
sources and combinations of environmental predictors repre-
senting the fire environment triangle. Our objective is first to
provide a quantitative understanding of the environmental
factors regulating the potential distribution of forest fires in
the Western Ghats of India. From the analysis of parsimonious
but nevertheless efficient Maxent fire susceptibility models,

Location of the study areas in the southern Western Ghats of India with a map of fire occurrences detected by MODIS for the period 2003—07.

we then provide some practical insights for fire management in
the region.

Material and methods
Study areas

The Western Ghats of India cover an area of 160 000 km? that
stretches for 1600 km along the west coast of southern penin-
sular India, 40 km on average from the shore line, from the Tapti
river (21°N) to Kanyakumari, the southernmost tip of the Indian
peninsula (8°N) (Fig. 1). This relief barrier, which forms
an almost continuous escarpment of ~1000m in spite of
the presence of a few passes and high-elevation peaks,
orographically exacerbates summer monsoon rains and is
responsible for steep bioclimatic gradients that have long been
recognised as major ecological determinants of the WG forest
vegetation (e.g. Champion 1936; Pascal 1986). In the coastal
plain, annual rainfall is >2000 mm, commonly reaching more
than 5000 mm near the crest of the Ghats. Beyond the crest,
annual rainfall rapidly diminishes, reaching values below 1000—
1500 mm at 10-50 km towards the interior region. Temperature,
in particular mean coldest month temperature, also decreases
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with increasing altitude in this mountainous region. Correlating
with the sharp decrease in rainfall beyond the crest of the Ghats,
the length of the dry season rapidly increases in a west—east
direction. However, the northward monsoon front displacement
from the south to the Himalayas, and its retreat in the reverse,
creates a differential seasonal pattern with latitude, which does
not correlate with mean annual rainfall. Consequently, dry
season length also increases from south to north (see Gunnell
1997 or Pascal 1982, 1988 for more details about the climate of
the region). Approximately 4000 species of flowering plants
including 1600 endemic species (40%) have been reported for
the WG region (Manokaran et al. 1997), which is now included
within a world biodiversity hotspot.

In this paper, we only considered the southern part of the
WG, i.e. a study area of 73 784 km? between 74 and 78°E and
8 and 16°N (see Fig. 1). Land-cover types range from wet
evergreen to dry deciduous forest habitats in various stages of
degradation, to mountain forests and grasslands, alternating
with zones converted into agroforests, monoculture planta-
tions and to agriculture (see Table S1 in the Supplementary
material, see http://www.publish.csiro.au/?act=view_file&file_
id=WF10109#_AC.pdf). We also selected two contrasting sub-
regions within the southern WG, namely the Uttara Kannada
(UK; 10284 km?) district of Karnataka state to the north and the
Nelliyampathi Hills (NH; 1861 km?) in the Palakkad district of
Kerala state (see Fig. 1). UK is an area running from the seashore
to the crest of the Ghats, and therefore exhibiting important
variation in annual rainfall and thus a high diversity of vegeta-
tion types, from wet evergreen primary forests to dry deciduous
forests. NH is an area dominated by wet evergreen forests, which
was recently studied within the framework of a pilot landscape
approach to forest management (Ramesh and Gurrukkal 2007).
Details about the southern WG and the two subregions are
provided in the Supplementary material (Table S1).

Fire occurrence data

Data on fire occurrences were obtained from MODIS (Moderate-
Resolution Imaging Spectroradiometer), which is the first
satellite to provide thermal sensors specifically designed for fire
monitoring (Giglio et al. 2003). In this paper, we used the
MODIS Hotspots database collection 4 (http://maps.geog.umd.
edu/firms/, accessed 14 December 2011), which daily recorded
flaming and smouldering fire hotspots from ~1000m? in size
for the period 2003—07. The MODIS system is considered as the
most accurate and reliable in terms of detection accuracy and
completeness (Langner and Siegert 2009), but as with any
satellite system, the information gathered depends on the tech-
nical properties of the sensors, so that fire occurrences can be
subject to false detections. Elaborate algorithms have thus been
developed to improve fire detection accuracy (Kaufman and
Justice 1998; Roy ef al. 2008) and each fire occurrence is pro-
vided with a detection confidence level. However, as our study
area is entirely covered by vegetation and any place is thus likely
to burn, we considered that missing any occurrence was less
desirable than having false occurrences. Following Langner and
Siegert (2009), we therefore retained all hotspots detected,
although 2007 has some missing data from mid-August. A total
of 7438 fire occurrences were recorded in the southern WG over
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the period 2003-07, including 1392 and 288 occurrences in the
UK and NH areas.

Environmental predictors

We considered different sets and sources of environmental
predictors of fire occurrences, which are summarised in Table 1.

Vegetation layer

Three different sources of vegetation data were tested. The first
one is derived from a set of 1 : 250 000-scale forest maps of south
India published by the French Institute of Pondicherry (FIP)
(Pascal et al. 1997a, 1997b, 1997¢; Ramesh et al. 1997, 2002).
These maps classify the natural vegetation of the WG based on
its physiognomy, phenology and floristic composition and
according to bioclimatic and disturbance factors with reference
to the concepts of climatic climax and dynamics of succession
(Pascal 1986). More than 150 different vegetation classes were
initially defined for the WG region. We simplified those classes
into broader categories taking into account dryness of vegetation
and dominant presence of deciduous species, grasses and weeds,
which could act as fuel loads for fires. The FIP simplified 1-km
resolution vegetation map (FI/P map; Renard et al 2010)
encompasses 13 different classes, of which 10 are represented in
UK and 9 in NH (see Table S1).

We also used as another source of vegetation data the
MODIS 1-km Land Cover Type 1 (LCT; Friedl et al. 2010),
which identifies 17 classes defined by the International Geo-
sphere Biosphere Program: 11 natural vegetation classes, three
developed and mosaic land classes, and three non-vegetated
land classes. As this LCT is available yearly, we chose the 2004
version, which is the year that had the highest number of
fire occurrences in the southern WG during the study period
(2673 records).

Finally, we used as a third source of vegetation data the
Normalised Difference Vegetation Index (NDVI), which is the
most commonly used index to assess live fuel moisture content
(Chuvieco 2003). We used the MODIS 1-km resolution NDVI
of March 2004 too. Unlike the two other sources of vegetation
data that are categorical, NDVI is a continuous variable. More
details about MODIS LCT and NDVI data for the southern WG
can be found on the NASA website (https://Ipdaac.usgs.gov,
accessed 14 December 2011), and in Renard et al. (2010) for the
WG extract.

Topographical and climatic variables

The Elevation layer was resampled at 1-km resolution from
SRTM (NASA Shuttle Radar Topography Mission) 90-m
Digital Elevation Data, version 4 (Jarvis et al. 2008) using the
nearest-neighbour method available in ArcView GIS 3.2a (ESRI
Inc., Redlands, CA). A4spect (in degrees) and Slope (as a
percentage) were then derived using standard methods (Renard
et al. 2009).

Three different sources of climatic data were used. We first
derived, from the bioclimatic maps (Pascal 1982) that were
prepared by the French Institute of Pondicherry in the frame-
work of'its vegetation mapping program, three layers of climatic
normals (annual rainfall, temperature and dry season length)
obtained from 3000 rain gauges and 50 temperature stations
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Definition of environmental predictors used in Maxent models of fire occurrence for the southern Western Ghats, India

Sources (all last accessed 15 December 2011): 1, http://hal.archives-ouvertes.fr/hal-00481614; 2, https://Ipdaac.usgs.gov/; 3, http://hal.archives-ouvertes.fr/
hal-00411120; 4, www.worldclim.org/; 5, present study (see Material and methods). FIP, French Institute of Pondicherry; MODIS, Moderate Resolution
Imaging Spectroradiometer; NDVI, Normalised Difference Vegetation Index; SRTM, Shuttle Radar Topography Mission

Code (number of variables in the dataset) Variable Source
Vegetation
FIP FIP simplified vegetation map 1
LCT MODIS 1-km MCD12Q1 Land Cover Type 1, v. 4, 2004 1,2
NDVI MODIS 1-km MYD13A3 NDVI, v. 5, March 2004 1,2
Topography data interpolated at 0.01 decimal degrees (DD) from SRTM 90-m Digital Elevation Model 3
Elevation Elevation (m)
Aspect Aspect derived from elevation grid (°)
Slope Slope angle derived from elevation grid (%)
T Elevation + Aspect + Slope
Climatic normals (1950-80) interpolated at 0.01 DD from FIP bioclimatic maps 3
Rainfall Seven rainfall classes
Temperature Five temperature classes
Dry season Dry season length (months)
PRTD Rainfall + Temperature + Dry season
Climate normals (1950-2000) from WorldClim database (1-km? resolution interpolations) 4
p Average monthly precipitation (12 monthly values, mm)
t Average monthly maximum temperature (12 monthly values, °C x 10)
w24 p +1(i.e. 24 variables)
b 19 bioclimatic variables
bl Annual mean temperature (°C x 10)
bi2 Annual mean precipitation (mm)
DI Annual dryness index computed as b1/b12
w3 bl+b12+ DI
w20 b+ DI
Yearly climate data (2002—-07) interpolated at 0.01 DD from Indian Meteorological Department (IMD) 5
Rf Total yearly rainfall (mm)
Tp Mean yearly temperature (°C)
Ds Mean yearly number of dry months
n Rfin) + Tp(n) + Ds(n) (same year as the fire occurrences)
(n—1) Rfin — 1)+ Ip(n — 1) + Ds(n — 1) (year preceding the fire occurrences)
™ Mean yearly temperature of the warmest quarter (Mar—May) (°C)
e Mean yearly temperature of the coldest quarter (Jun—Aug) (°C)
PW Yearly precipitation of the wettest quarter (Jun—Aug) (mm)
PD Yearly precipitation of the driest quarter (Jan—-Mar) (mm)
DF Yearly dryness index of the fire season (Feb—Apr) (°C mm ")
S DF(n)+ PD(n) +PW(n— 1)+ TC(n — 1)+ TW(n)
(DF, PD and TW from same year, PWW and TC from the year preceding the fire occurrences)
Climatic normals (2002—07) derived from yearly climate data interpolated at 0.01 DD from IMD
Rfimean Mean annual rainfall derived from Rf' (mm)
Tmean Mean annual temperature derived from 7p (°C)
Dsmean Mean number of dry months per year derived from Ds
M Rfimean + Tmean + Dsmean
Anthropogenic factor 5

Dist_to_roads

Classes of 1-km distance to the closest road

over the period 1950-80. These maps, which present interpola-
ted surfaces combining rainfall and temperature classes over
which dry season length is superimposed, were digitised
with 1-km sampling. This dataset is referred to as Pascal’s
bioclimatic dataset (prrp) hereafter (see Table 1).

Second, we extracted from the Worldclim version 1.4 data-
base (Hijmans er al. 2005) another set of climatic normals
(average monthly precipitation and temperature) interpolated
at 1-km resolution over the period 1950-2000 (see Table 1), as
well as a set of 19 bioclimatic variables, which are biologically

meaningful variables derived from monthly temperature
and rainfall values. Definition of these bioclimatic variables is
provided on the Worldclim website (see also Table S2). As none
of these referred to dryness, we also added a dryness index (DI),
defined as the ratio between annual mean temperature and
annual precipitation (Brown and Lugo 1982).

Finally, we interpolated yearly climatic data corresponding
to the study period and obtained from the Indian Meteorological
Department (IMD) for 30 stations throughout the southern WG.
Annual rainfall, mean temperature and dry season length



Modelling forest fires in the Western Ghats, India

(as defined in Pascal 1982) were computed for each station and
each year from 2002 to 2007. We also built, for each year,
seasonal variables, i.e. mean temperature of warmest and
coldest quarters and precipitation of wettest and driest quarters,
as well as a DI for the fire season (February—April). We also
derived climatic normals from these data, by averaging the
annual values over the period 2003—07 (see Table 1). We
computed all spatial interpolations with the minimum curvature
method using Surfer 8 software (Scientific Software Corp.,
Sandy, UT) at a 1-km resolution.

Anthropogenic variables

In most cases, forest fires have an anthropogenic origin, whether
voluntary or involuntary (Chuvieco 2003). As the WG are the
biodiversity hotspot with the highest human density, it is highly
vulnerable to anthropogenic disturbances (Kodandapani et al.
2008). Including such a factor in a fire susceptibility model is
therefore of primary importance (Chou 1990; Vega-Garcia et al.
1993; Chuvieco 2003). In particular, the two latter papers
demonstrated that the presence of roads increases human pres-
sure on wildland and is therefore a possible cause of ignition by
accident and negligence. Therefore with GIS we created 10
buffer zones from 1 to 10-km width from the road network, and
used these layers as an anthropogenic fire risk variable.

Maxent modelling of fire occurrences

We fitted Maxent models to our data using 70% of the fire
occurrences (training points). We then assessed the predictive
power of models by cross-validations using the 30% remaining
occurrences (test points) not used to fit the model (Guisan and
Zimmerman 2000; Deblauwe et al. 2008) and a set of 10000
random locations representing background (or pseudo-absence)
points (Phillips et al. 2006). In our case, a high value of Maxent
function at a particular location indicates that it is fire-prone. We
used default values of the regularisation parameters for all
models (more details can be found in Phillips 2005; Phillips
et al. 2006; Phillips and Dudik 2008).

Model performance was evaluated by the ROC (Receiver
Operating Characteristic) analysis commonly used for evaluat-
ing species distribution models (Fielding and Bell 1997). The
method is based on the probability for positive (test points) and
negative (pseudo-absence points) instances to be correctly
predicted by the model. It provides an AUC (Area Under Curve)
value as a general measure of model performance, which we
used to compare the efficiency of various sets of environmental
variables to predict fire occurrence. Note that in the case of
pseudo-absences, AUC values of 0.5 (random predictions) and 1
(perfect predictions) are no longer valid references because they
are dependent on the area of distribution (Jimenez-Valverde
2011). AUC values are therefore comparable among different
models in a given study area, but not between study areas.
Maxent was thus run with different data sources considering
vegetation, topographical or climatic sets of predictors indepen-
dently. Full models combining the three types of variables from
different sources were then fitted for the entire region of the
southern WG and for the UK and NH subregions, using all fire
occurrences from 2003 to 2007 (integrated models), as well as
annual data (annual models; the number of occurrences
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considered in each case is provided in Table S3). All models
were run 50 times to allow statistical analysis on AUC distribu-
tions, each time with a different random selection of training and
testing fire occurrences. We then performed ANOVA and
Mann—Whitney multiple comparison tests to assess potential
significant differences between models performances.

Variables selection

We analysed the environmental variables’ relative contributions
to the most suited models based on Maxent jack-knife tests
(Elith et al. 2006). This method indicates which variables matter
most when each variable is used in isolation or is excluded in
turn from the predictive model. However, a major drawback of
the method is that it doesn’t account for multicollinearity rela-
tions between predictors (Elith et al. 2006). Therefore, we also
used hierarchical partitioning (HP; Chevan and Sutherland
1991), which segregates explanatory power of k variables into
independent effects and effects caused jointly with other vari-
ables among all possible 2 models (Mac Nally 2000). We
performed HP using the package hier.part 1.0-3 of R statistical
software (R Development Core Team 2010). Finally, based on
both Maxent jack-knifes and independent contributions
obtained with the HP method, we selected the most significant
predictors for each study area in order to build parsimonious
predictive models of fire occurrence.

Results
Comparison of multiple data sources

In each study area, we compared the independent predictive
power of the different data sources from mean test AUC values
obtained over 50 Maxent runs (simply referred to as AUC in the
following text). This showed (Table 2) that, when used alone for
predicting all fire occurrences from 2003 to 2007 (integrated
models), the FIP vegetation cover map and MODIS NDVT layer
exhibited significantly higher AUC (P =0.01) than MODIS
LCT, the FIP map performing significantly better than ND VI for
WG and UK. We therefore considered that the F7P vegetation
cover map was the best source of vegetation data to be included
in a prediction model of fire occurrences in the Western Ghats
of India.

Among the three sources of climatic normals, those derived
from IMD (M) and Worldclim (3 subset, see Table 1) data-
bases performed significantly better (P=0.01) than those
derived from Pascal’s bioclimatic map (prrp). M performed
significantly better than W3 in WG and NH, underlying the
importance of time concordance between fire and climatic
records.

Finally, the best sources of climatic data appeared to be
W20 and W24, which exhibited the best predictive power in all
study areas, with AUC values between 0.82 and 0.92. Note that
these data sources involved a large number of predictors
(20 and 24) and included seasonal climatic variables instead
of annual means as for the climatic normals (see Table 1).
This indicates that seasonal climatic variations are probably
important determinants of fire occurrence in the Western Ghats
of India.

We therefore retained 3 as a good, freely available source
of climatic normals for predicting all fire occurrences from 2003
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Table 2. Predictive performance of different data sources on all MODIS fire occurrences from 2003 to 2007 (integrated models) over the southern
Western Ghats (WG) of India and in two nested subregions in Uttara Kannada (UK) and Nelliyampathi Hills (NP)
Similar letters indicate non-significant statistical differences (P > 0.01) between mean test AUC (Area Under Curve) over 50 Maxent runs (s.d. = standard

deviation) based on ANOVA and Mann—Whitney tests (both adjusted for multiple comparisons). Codes for the variables are given in Table 1

Data WG UK NP
sourees AUC s.d. AUC s.d. AUC s.d.

FIP 0.702 0.004 0.820 0.009 0.673" 0.02

LCT 0.603 0.005 0.653 0.009 0.585 0.021
NDVI 0.674 0.005 0.789° 0.007 0.690 0.022
T 0.786° 0.003 0.786" 0.011 0.674° 0.022
PrTD 0.784° 0.005 0.834 0.008 0.729 0.014
M 0.891 0.003 0.875 0.005 0.803 0.017
w3 0.878 0.003 0.889 0.007 0.731° 0.02

w20 0.915 0.002 0.909 0.005 0.828° 0.016
w24 0.912 0.002 0.914 0.004 0.829° 0.019

to 2007 (integrated models), and decided to investigate inde-
pendently the relationship between fire occurrence and annual
climatic variations (annual models). We also note from Table 2
that topography appeared to have an effect on fire occurrences
not significantly different from those of climatic normals (WG)
or vegetation (UK and NP).

Variables contributions to integrated models

We then investigated the contributions of variables to the
complete integrated models combining, for each study area,
a vegetation layer (FIP map), climatic normals (3 = annual
mean temperature (b/)+ annual mean precipitation (b12)+
dryness index (DI=b1/b12)), topography (T = Elevation+
Aspect + Slope) and an anthropogenic factor, which is the dis-
tance to road network (Dist_to_roads). Fig. 2 shows that im-
portance of variables contributions varied widely among the
three study areas. Jack-knife tests showed, however, that in the
three cases, rainfall (b12) and vegetation (FIP map) were the
variables with highest training gains when used in isolation,
along with DI in UK. The other variables with significant
training gains were DI in WG and NH, and Elevation, temper-
ature (b1) and Dist_to_roads in NH.

Independent and joint variables contributions as computed
with the HP method, however, revealed complex multicolli-
nearity relationships between the explanatory variables, which
made the response curve of each single variable difficult to
interpret. For instance, the FIP vegetation layer showed a very
small independent contribution at the scale of WG, which means
that it had a high degree of overlap with the other variables.
Similarly, Aspect, Slope and Dist_to_roads exhibited very small
independent contributions in all three study areas, though the
latter showed a significant training gain in NH, and a surprising
and maybe spurious negative independent contribution in WG,
which would indicate a slight suppressor effect on fire occur-
rence (Chevan and Sutherland 1991).

Parsimonious fire susceptibility models

Based on the above analyses, we then selected the most signif-
icant variables in order to obtain more parsimonious but

nevertheless efficient fire susceptibility models for each study
area (Fig. 3). Atthe scale of the entire WG (Fig. 3a), the retained
parsimonious model performed significantly better (P = 0.01)
than the full model with an AUC of 0.880 (s.d. = 0.002 over 50
runs). It is in fact the model that showed the best performance
among the 256 possible combinations of variables. It involved
rainfall (b72; with independent contribution /= 9.3%), dryness
index (DI; I=17.2%), temperature (b1; [=5.6%), Elevation
(I=4.5%) and Slope (I=4.2%).

In the UK (Fig. 3b) and NH (Fig. 3¢) study areas, the best
parsimonious models didn’t differ significantly from the respec-
tive full models. In UK (AUC =0.877; s.d. =0.006), the parsi-
monious model involved, in decreasing order of importance,
dryness index (DI; with independent contribution /=5.7%),
rainfall (b12; I =5.7%), temperature (b1; I =4.4%), vegetation
(FIP map; [=4.2%) and Elevation (I=4.1%). In NH
(AUC =0.731; s.d.=0.020), it involved rainfall (b12; with
independent contribution /=6.9%), vegetation (FIP map;
1=5.5%), dryness index (DI; I=5.1%), Elevation (I =4.3%),
temperature (bl; [=4.2%) and Dist_to_roads (I=1.5%),
which we retained for its substantial training gain when used
alone as shown by the jack-knife tests. It has to be noted that the
vegetation layer was here the second most important variable in
terms of independent contribution, whereas it was only
the fourth in UK.

The parsimonious models are represented as maps of relative
susceptibility to fire occurrences in Fig. 4. At the regional scale
(i.e. southern Western Ghats), areas with high relative suscepti-
bility to fire occurrence correspond mainly to the eastern slopes
of the Ghats, which support dry to moist deciduous forest
habitats (Fig. 4a). However, the local extracts of this map
corresponding to UK and NH areas (Fig. 4b, c¢) largely over-
estimated the surfaces of high susceptibility when compared
with the maps obtained from the specific UK and NH parsi-
monious models (Fig. 4f, g).

Annual models

Performances of annual models are given in Table 3, which
shows that AUCs were very low, thus predictions inefficient, in
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Fig. 2. Variables contributions to prediction models of all fire occurrences from 2003 to 2007 (integrated models) over the southern Western Ghats of India
(WG) and in two nested subregions in Uttara Kannada (UK) and Nelliyampathi Hills (NH). Jack-knifes of regularised training gains (right) when variables are
used alone (black), are not used (grey) or are all used together (white bar). Hierarchical partitioning of variables importance (left) into independent (black) and
joint (grey) contributions. Codes for the variables are as given in Table 1.

NH in 2003 and 2006 because of the extremely small number of
fire occurrences recorded these years (4 and 6). The seasonal
model S, which involves bioclimatic variables centred on the
driest quarter (or dry season) of the year n and on the wettest
quarter (or monsoon season) of the preceding year (n—1),
generally performed significantly better (P =< 0.01) than models
centred on the current (n) or prior calendar year (n—1).

We therefore used these seasonal climatic variables to study
variables importance in the models.

The annual models showed a quite consistent pattern of
variables contributions across years, with climatic seasonal
variables exhibiting a high, independent contribution at all
scales (Fig. 5), particularly precipitation of the wettest quarter
before the fire season (PW(n — 1)) and dryness index of the fire



H Int. J. Wildland Fire

Western Ghats
AUC = 0.880 (s.d. = 0.002)

30
20
) H
: H =
D s 3 § g
2 Q S} = kS
N 2 S 5 @
= (1)
g 2 5 iy
£ = 2
& Q)
Uttara Kannada
AUC = 0.877 (s.d. = 0.006)
o
< 2 —
[0
[&]
C
.8
< 10
: H
el
Q
g, O] ]
—_ =N ~ = = <
g s N by g g
L » Q . € (§
1) = Q Q
Q < £ = Q2
IS T T w w
N 'S = =
Q T %
=
Nelliyampathi Hills
AUC = 0.731 (s.d. = 0.020)
20
10
0 N i~ = < = 1)
- & Q S Q %
Q S Dy ® ~ 3
= o @ 3 g i
g T 2 o 5 L
£ ~ = o |
3 - S = B
x g )
)
=

Fig. 3. Proportion of explained variability accounted for by the different
variables in the best parsimonious models of prediction of fire occurrences
from 2003 to 2007 over the southern Western Ghats of India (WG) and in two
nested subregions, in Uttara Kannada (UK) and Nelliyampathi Hills (NH).
Independent (black) and joint (grey) contributions of each variable are
obtained by hierarchical partitioning of goodness-of-fit statistics (i.e. Max-
ent’s AUC). Mean AUC (Area Under the Curve) and their standard
deviations (s.d.) are given from 50 Maxent runs of each model. Codes for
the variables are given in Table 1.

season (DF(n)). Aspect and Dist_to_roads did not contribute
significantly in any study area. At the scale of the entire WG, the
other seasonal variables as well as Elevation and Slope also
contributed significantly to the model, whereas vegetation (FIP
map) had a very small independent contribution as in the
integrated models. In the two nested areas, and particularly in
UK, vegetation contributed significantly, whereas the other
seasonal variables (PD(n), TC(n — 1) and TW(n)) contributed
less than at the scale of the WG.
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Discussion

Environmental determinants of forest fires
in the Western Ghats

We have demonstrated that a combination of variables repre-
senting the fire environment triangle through vegetation,
climate and topography can lead to reasonable predictions of the
spatial distribution of fire occurrence in the Western Ghats of
India. However, the large spatial variability of fire occurrence
attributed to the joint effects of more than one environmental
variable revealed complex multicollinear relations between
these variables. Correlations were substantial because vegeta-
tion largely reflects both climatic and topographic conditions in
the Western Ghats of India (e.g. Pascal 1988; Ramesh et al.
2010). Thanks to the HP method, we also demonstrated that
variables contributions varied with respect to the specific
characteristics of the studied areas. At the regional scale of the
southern WG, climatic variables contributed most to the
predictive power of the models, whereas the independent con-
tribution of vegetation did not. The reason is that information
contained in the vegetation layer is already expressed by the
climatic variables. This is especially true at such a large spatial
scale, where the main forest types (dry v. moist) directly depend
on the total amount of annual rainfall. In the two nested sub-
regions of smaller extent (i.e. UK and NH), climatic conditions
are more homogeneous, whereas differences still exist in veg-
etation and topography, which influence fire occurrences.
Hence, climatic variables and especially precipitation are more
appropriate to discriminate fire-prone areas at a regional scale,
whereas vegetation becomes one of the most important
explanatory factors at the local scale.

Consequently, a parsimonious fire susceptibility model was
built for the entire WG region without a vegetation layer, which
could appear surprising at first sight as fuels (i.e. vegetation) are
basically required for a fire to happen. However, this result is in
accordance with Parisien and Moritz (2009), who also found
advantages in not taking vegetation into account. Nevertheless,
although vegetation can be omitted for large-extent
(e.g. 100000km?) fire prediction models, it still needs to be
explicitly included in local models where differences between
climatic conditions are negligible or not discriminant for identi-
fying fire-prone areas.

For the entire WG and for the two nested subregions,
parsimonious models reached the same or better predictive
power than full models. This allowed us to work with efficient
fire susceptibility models based on a reduced number of vari-
ables without a substantial loss of classification accuracy.
Furthermore and in contrast to the full models, all the variables
included in the parsimonious models presented a significant
(i.e. >4%) independent contribution to model performance and
can thus be considered as ecologically meaningful for identify-
ing fire-prone areas. The only variable excepted is the Dist_to_
roads network, only kept in NH. Although its independent
contribution was weak in the full model, we decided to keep it
in the parsimonious model because its influence was clearly
visible on the fire susceptibility map of Fig. 4f, where fire
occurrences and roads are almost exclusively located in the
south-western part of the area. However, HP results did not
highlight the efficiency or importance of such human-related
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Fig. 4. Relative susceptibility to fire maps built from parsimonious models based on MODIS Hotspots data of fire occurrences from 2003 to 2007 for the
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Table 3. Predictive performance of the annual models (mean test AUC (Area Under Curve) values over 50 Maxent runs and associated standard
deviations) of prediction of fire occurrences (MODIS Hotspots data) over the southern Western Ghats (WG) of India and in two nested subregions in

Uttara Kannada (UK) and Nelliyampathi Hills (NP)

Similar letters indicate non-significant statistical differences (P > 0.01) based on ANOVA and Mann—Whitney tests (both adjusted for multiple comparisons).
Codes for the variables are given in Table 1

Model 2003 2004 2005 2006 2007
AUC s.d. AUC s.d. AUC s.d. AUC s.d. AUC s.d.
WG n 0.921* 0.007 0.901 0.004 0.896" 0.005 0.893 0.005 0.884 0.005
(n—1) 0.922* 0.005 0.904 0.003 0.896" 0.006 0.878 0.006 0.897 0.004
N 0.921* 0.007 0.924 0.002 0.907 0.005 0.908 0.005 0.887 0.004
UK n 0.868 0.018 0.892 0.009 0.882° 0.01 0.821% 0.024 0.898* 0.023
(n—1) 0.857 0.017 0.875 0.011 0.881* 0.012 0.825% 0.016 0.868 0.021
N 0.916 0.014 0.908 0.009 0.907 0.01 0.88 0.018 0.893% 0.021
NH n 0.309*° 0.171 0.753 0.023 0.818*° 0.053 0.545% 0.171 0.742°% 0.042
(n—1) 0.378" 0.136 0.782 0.027 0.804" 0.049 0.580" 0.231 0.715 0.043
S 0.289° 0.163 0.816 0.022 0.838° 0.047 0.385 0.143 0.764* 0.045
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Fig. 5. Proportion of explained variability accounted for by the different
variables in annual models of predictions of fire occurrences for 2003 to
2007 in the Western Ghats of India and in the two nested subregions in Uttara
Kannada (UK) and Nelliyampathi Hills (NH). 2003 and 2006 are not
represented for NH because of a very small number of fire occurrences
recorded these years. Independent contributions of each variable are
obtained by hierarchical partitioning of goodness-of-fit statistics (i.e. Max-
ent’s AUC (Area Under Curve)). Codes for the variables are given in Table 1.

variables in our fire susceptibility models. In fact, roads can help
provide access for fire-causing agents but they also provide
access to fire detection and suppression activities.

Importance of interannual climatic variations

The three sources of climatic normals represented slightly dif-
ferent information, which might have their own sources of
errors. Besides, despite the small number of climatic stations
used for interpolating climatic normals derived from the IMD
dataset (M), the good performance of the corresponding models
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underlines the importance of temporal concordance between
observed fire occurrences and measured climatic variables.
Indeed, IMD climatic layers were interpolated with climatic
data related to the same period as the fire occurrences (2003-07),
whereas Pascal bioclimatic layers (prtp) were interpolated with
data related to the 1950—80 period and Worldclim climatic layers
(W3) with data related to the 1950-2000 period.

But a more interesting pattern detected in our analyses is the
good performance of models based on seasonal data and the
preponderant contributions of variables related to the monsoon
period that precedes the fire season. Temperature of the coldest
quarter (corresponding to the wettest quarter) of the year before
the fire season contributed consistently more than temperature
of'the actual fire season. This result, which can appear surprising
at first, probably comes from the correlation between tempera-
ture and precipitation, as the fuel moisture content during the
fire season mostly depends on rainfall conditions of the previous
year. Hence efficient predictive models of fire occurrence could
be based on available climatic data of the monsoon season
before the fire season.

The importance of dealing with variables that express intra-
annual (i.e. seasonal) climatic variations is also well illustrated
by the good performance of models W24 and W20 compared
with other partial climatic models. Without any consideration
about the quality of the different climatic datasets or the
different methods used for data interpolation, the good perfor-
mance displayed by these models can certainly be explained by
the number of seasonal (W20) and monthly (W24) variables
involved, whereas the other models were only based on mean
annual variables (climatic normals). Unfortunately, we were not
able to assess the independent contributions of variables in these
models because the hier.part package for R cannot run with
more than nine independent variables in its current version (Olea
et al. 2010). Further analyses are therefore needed to design
more efficient parsimonious fire susceptibility models taking
into account both inter- and intra-annual climatic variations.

Practical insights for fire management in the WG

The most interesting outputs of Maxent algorithm are certainly
the fire susceptibility maps, showing where a fire is most likely
to happen within the study area. Such maps extend the fire-prone
areas to zones that might have not yet witnessed fire but that
present required climatic and vegetation conditions for a fire to
occur. The current prevention method applied by Forest
Departments in WG consists of creating fire-breaks before the
dry season in places where fire occurrences have been reported
or observed on remote sensing images (Murthy er al. 2006).
The proposed fire susceptibility maps could therefore help
the departments to build an appropriate network of fire-breaks
with effective communication and mobility to reach potentially
fire-prone areas.

However, comparing the fire susceptibility maps obtained
with Maxent models run at different spatial extents revealed
non-intuitive insights for forest fire management and forest
conservation in the WG. UK and NH susceptibility maps
extracted from the WG model appeared to be more fire-prone
than those obtained from the specific local models. This comes
from the fact that, owing to its poor independent contribution,
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vegetation was not included in the parsimonious model per-
formed at the WG level. Hence, the local extracts mainly
reflected the large-scale climatic conditions, ignoring the type
of local vegetation that provides the necessary fuel for the fire.
As a consequence, the model at the WG level predicted vast
highly suitable areas that we assume to be somewhat unrealistic
with respect to local variations in vegetation structure and
cover. Conversely, the local parsimonious models specifically
built for each subregion did integrate the FIP vegetation
layer, which precisely documents the vegetation types and
degradation levels. They consequently show more limited areas
of high susceptibility in places where fires actually occurred in
the past, and exhibit differences between UK and NH more
related to the particular vegetation features of these two
subregions.

The fire susceptibility maps built at different spatial scales
can be used to gain practical insights for the management and
prevention of forest fires in the Western Ghats. For instance,
effort that has to be directed to fire prevention could be adapted
according to a two-steps analysis. At the scale of the entire WG,
regional fire-prone areas can be identified with respect to normal
climatic conditions that determine climax vegetation types. At
the regional level, attention should also be paid to interannual
climatic variation, in particular the climatic data of the prior
monsoon season (year (n — 1)), which determine fuel moisture
content, and could provide a good fire alert model. In a second
step, local models incorporating precise vegetation data as a
proxy to fire-fuel content could be run to accurately determine
the most endangered areas, depending also on the density of the
road network or other anthropogenic factors that we did not
incorporate in the present study.

Conclusions

In this paper, we worked with the concept of the ecological
niche, classically used for species distribution modelling, for
identifying and characterising the spatial distribution of forest
fires in different nested areas of the Western Ghats of India. We
demonstrated that local extracts of regional models largely
overestimated the surfaces predicted as highly susceptible to
forest fires. We also demonstrated that the importance of envi-
ronmental controls of forest fires occurrence depends consid-
erably on the study area. At large spatial scales such as the
southern Western Ghats, we highlighted the importance of the
climatic conditions of the monsoon before the fire season in
accurately predicting the fire-prone areas during the following
dry season. We also showed that vegetation data were not es-
sential at this scale owing to its interactions with climatic and
topographic conditions. However, in the two small nested study
areas where climatic conditions are more homogeneous, we
demonstrated that vegetation becomes a crucial factor for
predicting the spatial distribution of fire occurrence. We finally
identified key combinations of ecologically meaningful vari-
ables for each study area. These results led to the construction of
efficient and parsimonious (based on a few variables) predictive
models of fire occurrence with different spatial ranges. These
models could be useful for forest managers to improve their
forest fires prevention actions and focus their efforts on
endangered sites predicted as highly suitable for forest fires.
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Table S1. Geographic, bioclimatic and vegetation features of the three areas studied in the
southern Western Ghats of India.

Mean annual rainfall and temperature ranges are from the Wordclim database (Hijmans et al. 2005).

Vegetation cover types are extracted from the simplified F7P vegetation map (Renard et al. 2010)

Southern Western Uttara Nelliyampathi
Variable Ghats Kannada Hills

Area (km?) 73784 10284 1861
Latitudinal range (°N) 8-16 13.5-15.3 10-10.3
Elevation range (m) 0-259%4 0-1006 25-1537
Mean annual number of fire occurrences (2003-07) 1487.6 278.4 57.6
Mean annual precipitation range (mm) 383-7150 734-5105 1416-3741
Mean annual temperature range (°C) 12.2-29.2 22.5-27.6 18.9-27.8
Vegetation types (% total cover):

* Primary and degraded deciduous forest 15.3 1.7 3.0

* Non-forest and agricultural 14.9 18.9 1.5

* Degraded formation in the potential area of wet

evergreen zone 14.1 8.4 0

* Wet evergreen primary forest 10.9 4.1 314

* Secondary moist deciduous forest 9.8 17.4 23.8

» Wet evergreen secondary or disturbed forest 8.1 29.2 8.4

» Commercial plantation 6.8 0 2.7

* Forest plantation 6.2 4.2 18.5

* Tree savanna to grassland in dry zone 4.6 1.4 0

* Primary moist deciduous forest and degradation 4.5 12.4 2.3

* Tree savanna to grassland in wet zone + mountain

grassland 2.4 23 8.3

* Mountain forest and degraded stages 1.4 0 0

* Dry evergreen forest and degradation 0.8 0 0
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Table S2. Definition of the 19 bioclimatic variables of the Wordclim database, as given at

http://www.worldclim.org/bioclim

Code Variable

BIO1 Annual mean temperature

BIO2 Mean diurnal range (mean of monthly (maximum temperature — minimum temperature))
BIO3 Isothermality (BIO2/BIO7) (x100)

BIO4 Temperature seasonality (standard deviation x 100)
BIOS Maximum temperature of warmest month

BIO6 Minimum temperature of coldest month

BIO7 Temperature annual range (BIOS — BIO6)

BIOS Mean temperature of wettest quarter

BIO9 Mean temperature of driest quarter

BIO10 Mean temperature of warmest quarter

BIOI11 Mean temperature of coldest quarter

BIOI2 Annual precipitation

BIO13 Precipitation of wettest month

BIO14 Precipitation of driest month

BIO15 Precipitation seasonality (coefficient of variation)
BIO16 Precipitation of wettest quarter

BIO17 Precipitation of driest quarter

BIOI18 Precipitation of warmest quarter

BIO19 Precipitation of coldest quarter
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Table S3. Number of fire occurrences used for training (70%) and testing (30%) the annual and integrated (2003—07) models

Western Ghats Uttara Kannada Nelliyampathi Hills
Training Testing Total Training Testing Total Training Testing Total
2003 460 197 657 162 69 231 3 1 4
2004 1871 802 2673 307 131 438 126 54 180
2005 1035 444 1479 286 123 409 33 14 47
2006 804 345 1149 131 56 187 4 2 5
2007 1036 444 1480 89 38 127 36 16 52
2003-07 5207 2231 7438 974 418 1392 202 86 288
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